|
|
|
|
LEADER |
11499cam a2200313Ii 4500 |
001 |
dd2b0abb-26a0-4307-96f4-48685bbd5781 |
005 |
20240717000000.0 |
008 |
150529s2015 fluaf b 001 0 eng |
010 |
|
|
|a 2015021170
|
020 |
|
|
|a 9781482243437
|q hardcover
|q alkaline paper
|
020 |
|
|
|a 1482243431
|q hardcover
|q alkaline paper
|
050 |
0 |
0 |
|a TA455.C55
|b P795 2015
|
082 |
0 |
0 |
|a 553.6/1
|2 23
|
100 |
1 |
|
|a Pusch, Roland,
|e author.
|
245 |
1 |
0 |
|a Bentonite clay :
|b environmental properties and applications /
|c Roland Pusch.
|
264 |
|
1 |
|a Boca Raton, FL :
|b CRC Press, Taylor & Francis Group,
|c [2015]
|
300 |
|
|
|a xxii, 334 pages, 20 unnumbered pages of plates ;
|c 24 cm
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Machine generated contents note: 1.1.Main Issues -- 1.2.Smectite Clay-The Muddiest Type of Soft Clay -- 1.3.Stress-Strain Problems -- 1.4.Preparation of Smectite Clay for Sealing Purposes -- 1.5.Quality Issues -- 1.6.Performance Tests -- References -- 2.1.Origin of Smectite Clays -- 2.2.Where Are All These Famous and Magic Clays? -- 2.2.1.North America -- 2.2.1.1.The United States -- 2.2.1.2.Canada -- 2.2.2.South America -- 2.2.3.Central America -- 2.2.3.1.Mexico -- 2.2.4.Africa -- 2.2.5.Middle East -- 2.2.6.Asia -- 2.2.6.1.China -- 2.2.6.2.India -- 2.2.6.3.Japan -- 2.2.7.Europe -- 2.2.7.1.Germany -- 2.2.7.2.Denmark -- 2.2.7.3.Italy -- 2.2.7.4.Spain -- 2.2.7.5.Czech Republic -- 2.2.7.6.Greece -- 2.3.Potential Smectite Resources -- 2.4.Are New Smectites Being Formed Today? -- 2.5.Quality of Natural Smectite Clays for Practical Use -- 2.6.Conclusion -- References -- 3.1.Basics -- 3.2.Smectite Family -- 3.3.Crystal Constitution of Smectites -- 3.4.Chemical Composition of Natural Smectite Clays -- 3.4.1.Smectite Component -- 3.5.Mineral Composition of Natural Smectite Clays -- 3.5.1.Smectite-Rich Clays -- 3.5.2.Clays with Moderate and Low Smectite Contents -- 3.6.Role of Clay Particle Charge -- 3.6.1.Basics and Practicalities -- 3.6.2.CEC, Anion Exchange Capacity, and Specific Surface Area -- 3.6.3.Mechanisms in Cation Exchange -- 3.6.4.Role of Anions -- 3.6.5.Phosphorus and Nitrogen -- 3.6.6.Sulfur -- 3.6.7.Organic Content -- 3.6.8.Special Role of Organic Elements -- 3.6.8.1.Bacteria -- 3.6.8.2.Identification of Smectite Minerals -- 3.7.Conclusion -- References -- 4.1.Overview -- 4.2.Physicochemical Background -- 4.2.1.Energy Considerations, Soil-Water Potentials -- 4.2.2.Hydration of Smectite Clay -- 4.3.Hydraulic Conductivity -- 4.3.1.Definition of Hydraulic Conductivity -- 4.3.2.Determination of the Hydraulic Conductivity in the Laboratory -- 4.3.3.Microstructural Implications -- 4.3.4.Role of Hydraulic Gradients -- 4.3.4.1.Test Principles and Theory -- 4.3.4.2.Experimental Proof of the Impact of the Hydraulic Gradient -- 4.3.4.3.Piping and Erosion -- 4.3.4.4.Experimental Evidence -- 4.3.4.5.Impact of Hydraulic Gradients on the Permeation of Water-Saturated Clay Seals -- 4.3.5.Impact of Saltwater on the Hydraulic Conductivity -- 4.3.6.Criteria -- 4.3.7.Impact of Smectite Content on the Hydraulic Conductivity of Mixed Soils -- 4.3.7.1.Mixed Clay and Coarser Material -- 4.3.7.2.Natural Soils -- 4.3.7.3.Hydraulic Conductivity of Unsaturated Clay -- 4.4.Gas Conductivity -- 4.4.1.Basics -- 4.4.2.Determination of Gas Transport Capacity -- 4.4.2.1.Background -- 4.4.2.2.Laboratory Technique -- 4.4.3.Modeling of Gas Penetration Using Capillary Analogs -- 4.5.Ion Diffusion -- 4.5.1.Definitions -- 4.5.2.Mechanisms and Basic Relationships -- 4.5.3.Role of the Microstructure -- 4.5.4.Impact of the Microstructural Constitution on Ion Diffusion -- 4.5.5.Test Principles and Theory -- 4.5.5.1.Technique -- 4.5.5.2.Role of Electrical Double Layers for Ion Diffusion -- 4.6.Colloid Transport -- 4.7.Microbiological Filtering -- 4.8.Heat Transport-Thermal Properties -- 4.8.1.Overview -- 4.8.2.Influence of Water Content -- 4.8.3.Influence of Smectite Content -- 4.8.4.Influence of Stress and Temperature -- 4.9.Couplings, Dependencies, and Interdependencies -- References -- 5.1.Introduction -- 5.2.Application of Concepts of Soil Mechanics to Smectite Clay -- 5.2.1.Effective Stress Concept -- 5.2.2.Role of the Effective Stress for the Physical Stability of Clay Seals -- 5.2.3.Stress-Strain Definitions and Parameters -- 5.2.3.1.Compression Modulus K -- 5.2.3.2.Shear Stress Modulus G -- 5.2.3.3.Oedometer Modulus M -- 5.2.3.4.Compression Properties -- 5.2.3.5.Time Dependence -- 5.2.3.6.Shear Strain -- 5.3.Role and Mechanisms of Consolidation and Creep -- 5.3.1.Cases -- 5.3.2.Consolidation -- 5.3.3.Shear Strain by Creep -- 5.4.Fundamentals of Thermal Conditions and Performance -- 5.4.1.Definitions and Parameters -- 5.4.2.Influence of Temperature -- 5.5.Evolution of Clay Seals -- 5.5.1.Hydration -- 5.5.2.Forslind-Jacobsson Model -- 5.6.Clay Microstructure and Its Role for the Stress-Strain Behavior of Smectite Clays -- 5.6.1.Scale Dependence -- 5.6.2.Impact of Heating -- 5.6.3.Microstructural Modeling of Smectite-Rich Clay -- 5.7.Effect of Combined Wetting and Heating of Clay Seals-The Buffer Case -- 5.7.1.Practical Cases -- 5.7.2.Hydration of Smectite-Rich Buffer Clay under Temperature Gradients -- 5.7.3.Physical Processes Taking Place in Buffer Clay -- 5.7.4.Evolution of the Buffer-Temperature -- 5.7.5.Evolution of the Buffer-Expansion and Consolidation under Hot Conditions -- 5.7.6.Modeling of the Hydration of Buffer Clay -- 5.7.7.Thermo-Hydro-Mechanical-Chemical Processes in Buffer Clay-Salt Accumulation -- 5.8.Concepts and Techniques for Isolating Moderately Hazardous Waste -- 5.8.1.Landfills -- 5.8.2.Underground Disposal in Shallow Repositories -- 5.8.3.Underground Disposal in Abandoned Mines -- 5.9.Concepts for Isolating Highly Radioactive Waste -- 5.9.1.Medium-Deep Repositories -- 5.9.1.1.The KBS-3V Concept -- 5.9.2.Steep Holes with Two or Several Canisters (Case A) -- 5.9.3.Big Cavern with Numerous Canisters (Case B-1) -- 5.9.4.Tunnels or Drifts with Large Clay-Isolated Concrete Containers (Case B-2) -- 5.9.5.Inclined Holes. (Case C) -- 5.9.6.Very Long Holes (Case D) -- 5.10.Very Deep Holes -- 5.11.Correlation of Hydraulic and Mechanical Performances of Clay Seals -- 5.11.1.Piping and Erosion of Clay Seals -- 5.11.2.VDH Concept -- 5.11.2.1.Clay Mud -- 5.11.2.2.Clay Block Seals -- 5.11.2.3.Interaction of Mud and Blocks -- 5.11.3.Usefulness of Rock for Hosting Repositories -- 5.12.Concluding Remarks -- References -- 6.1.Chemical Stability of Smectite Clay for Waste Isolation -- 6.1.1.Our Starting Point -- 6.1.2.Natural Analogs -- 6.1.2.1.Conversion of Smectite to Nonexpanding Minerals -- 6.1.2.2.Kinnekulle-A Comforting Case? -- 6.2.Experimental Evidence -- 6.2.1.Overview -- 6.2.2.Stripa Project Laboratory Study -- 6.2.2.1.Test Program and Techniques -- 6.2.2.2.Summary of Results -- 6.2.3.SKB-ANDRA Study -- 6.2.4.RMN Study -- 6.2.5.Swedish-Czech-Chinese University Study -- 6.2.5.1.Montmorillonite-Dominated MX-80 -- 6.2.5.2.Saponite-Dominated Clay -- 6.2.5.3.Mixed-Layer I/S Clay -- 6.2.6.SKB Field Tests -- 6.2.7.Matter of Stiffening -- 6.2.8.Interaction of Smectite Clay and Other Components -- 6.2.8.1.Smectite Clay Contacting Copper Metal -- 6.2.8.2.Smectite Clay Contacting Iron and Steel -- 6.2.8.3.I/S Mixed-Layer Smectite Clay Contacting Concrete -- 6.2.8.4.Montmorillonite-Rich Clay Contacting Low-pH Concrete -- 6.3.Summary Respecting Smectite Chemistry and Mineralogy -- 6.3.1.Overview -- 6.3.2.Geochemical Modeling -- 6.4.Concluding Remarks -- References -- 7.1.Overview -- 7.2.Block Preparation -- 7.2.1.Raw Material -- 7.2.2.Achievable Block Density -- 7.2.3.Preparation of Dense Blocks of Smectite Clay -- 7.2.4.Blocks Prepared by Uniaxial Compression -- 7.2.5.Blocks Prepared by Isotropic Compression -- 7.2.6.Microstructural Constitution of Compacted Smectite Clay -- 7.3.Clay Liners, Materials, and Principles of Construction -- 7.3.1.Principles of Design and Construction -- 7.3.2.Criteria -- 7.3.3.Principle of Placement and Compaction -- 7.3.4.Microstructural Constitution of Compacted Smectite Clay Liners -- 7.3.5.Microstructural Modeling of Smectite Clay -- 7.4.Clays for Rock Grouting -- 7.4.1.Use of Grouts with respect to Their Physical Stability -- 7.4.1.1.Argillaceous Cement Grouts -- 7.4.1.2.Role of Palygorskite -- 7.4.2.Penetrability and Sealing Function of Clay-Based Grouts -- 7.5.General Aspects on Selection and Use of Smectite Clays for Waste Isolation -- References -- 8.1.Waste Isolation by Use of Clay -- 8.2.VDH-Ostrich Philosophy or a Serious Alternative for HLW Disposal? -- 8.2.1.Background -- 8.2.2.Rock Conditions -- 8.2.3.Temperature Conditions -- 8.2.4.Conditions Respecting the Chemical Composition of the Groundwater -- 8.3.Sealing Components -- 8.3.1.Overview -- 8.3.2.Waste Canisters -- 8.3.2.1.Steel Canisters -- 8.3.2.2.Mud Performance -- 8.3.2.3.Casing Performance -- 8.3.2.4.Supercontainer Performance -- 8.3.2.5.Canister Performance -- 8.3.2.6.Buffer Clay Performance -- 8.3.3.Concrete -- 8.3.4.Practical Aspects-Placeability -- 8.3.5.Long-Term Function of Clay Components in the Sealed and Deployment Zones -- 8.3.6.Long-Term Function of Concrete Seals -- 8.3.7.Impact of Gamma Radiation -- 8.3.8.Unexpected Events -- 8.3.9.Environmental Impact -- 8.4.SARC-The Poor Man's Solution -- 8.4.1.Background -- 8.4.2.Steps in Siting of SARC -- 8.4.3.Constitution of a SARC Repository for HLW -- 8.4.3.1.General Conditions -- 8.4.3.2.Bottom Bed -- 8.4.3.3.Containers and Canisters -- 8.4.3.4.Clay Block Liner -- 8.4.4.General Scenario of a SARC Repository -- 8.4.4.1.Function of SARC -- 8.4.4.2.Bottom Bed -- 8.4.4.3.Clay Block Liner -- 8.4.4.4.Containers and Canisters -- 8.4.5.Environmental Impact -- 8.5.Borehole Sealing -- References -- 9.1.Origin of Life -- 9.2.Interaction of Smectite Clay and Organic Molecules -- 9.3.Interaction of Clays and Organics in Medical Treatment -- 9.3.1.Issues Considered -- 9.3.2.Clays in Natural Medicine -- 9.3.3.Clay for Healing Wounds -- 9.3.4.Extraction of Hazardous Elements Poisoning the Human Body -- 9.3.4.1.Principle -- 9.3.4.2.Preference of Clay Minerals -- 9.3.4.3.Interaction of Clay Minerals and Cells in the Gastric System -- 9.3.4.4.Radionuclides -- 9.3.5.Potential to Cure Cancer -- 9.3.6.Summing Up on Clays in Modern Medicine -- 9.4.Sun Protection -- 9.4.1.Pilot Study of the Performance of Organic- and Clay-Based Sun Creams -- 9.4.1.1.Tested Creams -- 9.4.1.2.Testing -- 9.4.1.3.Results -- 9.4.1.4.Conclusions -- 9.4.2.Comprehensive Studies -- 9.4.2.1.Tested Creams -- 9.4.2.2.Testing -- 9.4.2.3.Results -- 9.5.Clay in Cosmetology -- 9.5.1.Background -- 9.5.2.Interaction of Clay Minerals and Epidermis -- 9.5.3.Rheology -- 9.5.4.Clay Candidates --
|
505 |
0 |
|
|a Contents note continued: 9.5.5.Density and Consistency of Smectite Creams with and without Organic Liquid -- 9.6.Summary of Fundamental Properties of Smectitic Creams on Skin -- References.
|
650 |
|
0 |
|a Clay.
|
650 |
|
0 |
|a Bentonite.
|
650 |
|
0 |
|a Smectite.
|
650 |
|
0 |
|a Montmorillonite.
|
650 |
|
0 |
|a Engineering geology.
|
650 |
|
0 |
|a Sealing compounds.
|
650 |
|
0 |
|a Engineered barrier systems (Waste disposal)
|x Materials.
|
999 |
1 |
0 |
|i dd2b0abb-26a0-4307-96f4-48685bbd5781
|l a15751462
|s US-PST
|m bentonite_clayenvironmental_properties_and_applications____________________2015_______crcpra________________________________________pusch__roland______________________p
|
999 |
1 |
1 |
|l a15751462
|s ISIL:US-PST
|i Penn State
|t BKS
|a UP-EMS STACKS-EM
|c TA455.C55P795 2015
|d LC
|b 000077415370
|x BOOK
|p LOANABLE
|