Bentonite clay : environmental properties and applications /
Main Author: | |
---|---|
Format: | Book |
Language: | English |
Published: |
Boca Raton, FL :
CRC Press, Taylor & Francis Group,
[2015]
|
Subjects: |
Table of Contents:
- Machine generated contents note: 1.1.Main Issues
- 1.2.Smectite Clay-The Muddiest Type of Soft Clay
- 1.3.Stress-Strain Problems
- 1.4.Preparation of Smectite Clay for Sealing Purposes
- 1.5.Quality Issues
- 1.6.Performance Tests
- References
- 2.1.Origin of Smectite Clays
- 2.2.Where Are All These Famous and Magic Clays?
- 2.2.1.North America
- 2.2.1.1.The United States
- 2.2.1.2.Canada
- 2.2.2.South America
- 2.2.3.Central America
- 2.2.3.1.Mexico
- 2.2.4.Africa
- 2.2.5.Middle East
- 2.2.6.Asia
- 2.2.6.1.China
- 2.2.6.2.India
- 2.2.6.3.Japan
- 2.2.7.Europe
- 2.2.7.1.Germany
- 2.2.7.2.Denmark
- 2.2.7.3.Italy
- 2.2.7.4.Spain
- 2.2.7.5.Czech Republic
- 2.2.7.6.Greece
- 2.3.Potential Smectite Resources
- 2.4.Are New Smectites Being Formed Today?
- 2.5.Quality of Natural Smectite Clays for Practical Use
- 2.6.Conclusion
- References
- 3.1.Basics
- 3.2.Smectite Family
- 3.3.Crystal Constitution of Smectites
- 3.4.Chemical Composition of Natural Smectite Clays
- 3.4.1.Smectite Component
- 3.5.Mineral Composition of Natural Smectite Clays
- 3.5.1.Smectite-Rich Clays
- 3.5.2.Clays with Moderate and Low Smectite Contents
- 3.6.Role of Clay Particle Charge
- 3.6.1.Basics and Practicalities
- 3.6.2.CEC, Anion Exchange Capacity, and Specific Surface Area
- 3.6.3.Mechanisms in Cation Exchange
- 3.6.4.Role of Anions
- 3.6.5.Phosphorus and Nitrogen
- 3.6.6.Sulfur
- 3.6.7.Organic Content
- 3.6.8.Special Role of Organic Elements
- 3.6.8.1.Bacteria
- 3.6.8.2.Identification of Smectite Minerals
- 3.7.Conclusion
- References
- 4.1.Overview
- 4.2.Physicochemical Background
- 4.2.1.Energy Considerations, Soil-Water Potentials
- 4.2.2.Hydration of Smectite Clay
- 4.3.Hydraulic Conductivity
- 4.3.1.Definition of Hydraulic Conductivity
- 4.3.2.Determination of the Hydraulic Conductivity in the Laboratory
- 4.3.3.Microstructural Implications
- 4.3.4.Role of Hydraulic Gradients
- 4.3.4.1.Test Principles and Theory
- 4.3.4.2.Experimental Proof of the Impact of the Hydraulic Gradient
- 4.3.4.3.Piping and Erosion
- 4.3.4.4.Experimental Evidence
- 4.3.4.5.Impact of Hydraulic Gradients on the Permeation of Water-Saturated Clay Seals
- 4.3.5.Impact of Saltwater on the Hydraulic Conductivity
- 4.3.6.Criteria
- 4.3.7.Impact of Smectite Content on the Hydraulic Conductivity of Mixed Soils
- 4.3.7.1.Mixed Clay and Coarser Material
- 4.3.7.2.Natural Soils
- 4.3.7.3.Hydraulic Conductivity of Unsaturated Clay
- 4.4.Gas Conductivity
- 4.4.1.Basics
- 4.4.2.Determination of Gas Transport Capacity
- 4.4.2.1.Background
- 4.4.2.2.Laboratory Technique
- 4.4.3.Modeling of Gas Penetration Using Capillary Analogs
- 4.5.Ion Diffusion
- 4.5.1.Definitions
- 4.5.2.Mechanisms and Basic Relationships
- 4.5.3.Role of the Microstructure
- 4.5.4.Impact of the Microstructural Constitution on Ion Diffusion
- 4.5.5.Test Principles and Theory
- 4.5.5.1.Technique
- 4.5.5.2.Role of Electrical Double Layers for Ion Diffusion
- 4.6.Colloid Transport
- 4.7.Microbiological Filtering
- 4.8.Heat Transport-Thermal Properties
- 4.8.1.Overview
- 4.8.2.Influence of Water Content
- 4.8.3.Influence of Smectite Content
- 4.8.4.Influence of Stress and Temperature
- 4.9.Couplings, Dependencies, and Interdependencies
- References
- 5.1.Introduction
- 5.2.Application of Concepts of Soil Mechanics to Smectite Clay
- 5.2.1.Effective Stress Concept
- 5.2.2.Role of the Effective Stress for the Physical Stability of Clay Seals
- 5.2.3.Stress-Strain Definitions and Parameters
- 5.2.3.1.Compression Modulus K
- 5.2.3.2.Shear Stress Modulus G
- 5.2.3.3.Oedometer Modulus M
- 5.2.3.4.Compression Properties
- 5.2.3.5.Time Dependence
- 5.2.3.6.Shear Strain
- 5.3.Role and Mechanisms of Consolidation and Creep
- 5.3.1.Cases
- 5.3.2.Consolidation
- 5.3.3.Shear Strain by Creep
- 5.4.Fundamentals of Thermal Conditions and Performance
- 5.4.1.Definitions and Parameters
- 5.4.2.Influence of Temperature
- 5.5.Evolution of Clay Seals
- 5.5.1.Hydration
- 5.5.2.Forslind-Jacobsson Model
- 5.6.Clay Microstructure and Its Role for the Stress-Strain Behavior of Smectite Clays
- 5.6.1.Scale Dependence
- 5.6.2.Impact of Heating
- 5.6.3.Microstructural Modeling of Smectite-Rich Clay
- 5.7.Effect of Combined Wetting and Heating of Clay Seals-The Buffer Case
- 5.7.1.Practical Cases
- 5.7.2.Hydration of Smectite-Rich Buffer Clay under Temperature Gradients
- 5.7.3.Physical Processes Taking Place in Buffer Clay
- 5.7.4.Evolution of the Buffer-Temperature
- 5.7.5.Evolution of the Buffer-Expansion and Consolidation under Hot Conditions
- 5.7.6.Modeling of the Hydration of Buffer Clay
- 5.7.7.Thermo-Hydro-Mechanical-Chemical Processes in Buffer Clay-Salt Accumulation
- 5.8.Concepts and Techniques for Isolating Moderately Hazardous Waste
- 5.8.1.Landfills
- 5.8.2.Underground Disposal in Shallow Repositories
- 5.8.3.Underground Disposal in Abandoned Mines
- 5.9.Concepts for Isolating Highly Radioactive Waste
- 5.9.1.Medium-Deep Repositories
- 5.9.1.1.The KBS-3V Concept
- 5.9.2.Steep Holes with Two or Several Canisters (Case A)
- 5.9.3.Big Cavern with Numerous Canisters (Case B-1)
- 5.9.4.Tunnels or Drifts with Large Clay-Isolated Concrete Containers (Case B-2)
- 5.9.5.Inclined Holes. (Case C)
- 5.9.6.Very Long Holes (Case D)
- 5.10.Very Deep Holes
- 5.11.Correlation of Hydraulic and Mechanical Performances of Clay Seals
- 5.11.1.Piping and Erosion of Clay Seals
- 5.11.2.VDH Concept
- 5.11.2.1.Clay Mud
- 5.11.2.2.Clay Block Seals
- 5.11.2.3.Interaction of Mud and Blocks
- 5.11.3.Usefulness of Rock for Hosting Repositories
- 5.12.Concluding Remarks
- References
- 6.1.Chemical Stability of Smectite Clay for Waste Isolation
- 6.1.1.Our Starting Point
- 6.1.2.Natural Analogs
- 6.1.2.1.Conversion of Smectite to Nonexpanding Minerals
- 6.1.2.2.Kinnekulle-A Comforting Case?
- 6.2.Experimental Evidence
- 6.2.1.Overview
- 6.2.2.Stripa Project Laboratory Study
- 6.2.2.1.Test Program and Techniques
- 6.2.2.2.Summary of Results
- 6.2.3.SKB-ANDRA Study
- 6.2.4.RMN Study
- 6.2.5.Swedish-Czech-Chinese University Study
- 6.2.5.1.Montmorillonite-Dominated MX-80
- 6.2.5.2.Saponite-Dominated Clay
- 6.2.5.3.Mixed-Layer I/S Clay
- 6.2.6.SKB Field Tests
- 6.2.7.Matter of Stiffening
- 6.2.8.Interaction of Smectite Clay and Other Components
- 6.2.8.1.Smectite Clay Contacting Copper Metal
- 6.2.8.2.Smectite Clay Contacting Iron and Steel
- 6.2.8.3.I/S Mixed-Layer Smectite Clay Contacting Concrete
- 6.2.8.4.Montmorillonite-Rich Clay Contacting Low-pH Concrete
- 6.3.Summary Respecting Smectite Chemistry and Mineralogy
- 6.3.1.Overview
- 6.3.2.Geochemical Modeling
- 6.4.Concluding Remarks
- References
- 7.1.Overview
- 7.2.Block Preparation
- 7.2.1.Raw Material
- 7.2.2.Achievable Block Density
- 7.2.3.Preparation of Dense Blocks of Smectite Clay
- 7.2.4.Blocks Prepared by Uniaxial Compression
- 7.2.5.Blocks Prepared by Isotropic Compression
- 7.2.6.Microstructural Constitution of Compacted Smectite Clay
- 7.3.Clay Liners, Materials, and Principles of Construction
- 7.3.1.Principles of Design and Construction
- 7.3.2.Criteria
- 7.3.3.Principle of Placement and Compaction
- 7.3.4.Microstructural Constitution of Compacted Smectite Clay Liners
- 7.3.5.Microstructural Modeling of Smectite Clay
- 7.4.Clays for Rock Grouting
- 7.4.1.Use of Grouts with respect to Their Physical Stability
- 7.4.1.1.Argillaceous Cement Grouts
- 7.4.1.2.Role of Palygorskite
- 7.4.2.Penetrability and Sealing Function of Clay-Based Grouts
- 7.5.General Aspects on Selection and Use of Smectite Clays for Waste Isolation
- References
- 8.1.Waste Isolation by Use of Clay
- 8.2.VDH-Ostrich Philosophy or a Serious Alternative for HLW Disposal?
- 8.2.1.Background
- 8.2.2.Rock Conditions
- 8.2.3.Temperature Conditions
- 8.2.4.Conditions Respecting the Chemical Composition of the Groundwater
- 8.3.Sealing Components
- 8.3.1.Overview
- 8.3.2.Waste Canisters
- 8.3.2.1.Steel Canisters
- 8.3.2.2.Mud Performance
- 8.3.2.3.Casing Performance
- 8.3.2.4.Supercontainer Performance
- 8.3.2.5.Canister Performance
- 8.3.2.6.Buffer Clay Performance
- 8.3.3.Concrete
- 8.3.4.Practical Aspects-Placeability
- 8.3.5.Long-Term Function of Clay Components in the Sealed and Deployment Zones
- 8.3.6.Long-Term Function of Concrete Seals
- 8.3.7.Impact of Gamma Radiation
- 8.3.8.Unexpected Events
- 8.3.9.Environmental Impact
- 8.4.SARC-The Poor Man's Solution
- 8.4.1.Background
- 8.4.2.Steps in Siting of SARC
- 8.4.3.Constitution of a SARC Repository for HLW
- 8.4.3.1.General Conditions
- 8.4.3.2.Bottom Bed
- 8.4.3.3.Containers and Canisters
- 8.4.3.4.Clay Block Liner
- 8.4.4.General Scenario of a SARC Repository
- 8.4.4.1.Function of SARC
- 8.4.4.2.Bottom Bed
- 8.4.4.3.Clay Block Liner
- 8.4.4.4.Containers and Canisters
- 8.4.5.Environmental Impact
- 8.5.Borehole Sealing
- References
- 9.1.Origin of Life
- 9.2.Interaction of Smectite Clay and Organic Molecules
- 9.3.Interaction of Clays and Organics in Medical Treatment
- 9.3.1.Issues Considered
- 9.3.2.Clays in Natural Medicine
- 9.3.3.Clay for Healing Wounds
- 9.3.4.Extraction of Hazardous Elements Poisoning the Human Body
- 9.3.4.1.Principle
- 9.3.4.2.Preference of Clay Minerals
- 9.3.4.3.Interaction of Clay Minerals and Cells in the Gastric System
- 9.3.4.4.Radionuclides
- 9.3.5.Potential to Cure Cancer
- 9.3.6.Summing Up on Clays in Modern Medicine
- 9.4.Sun Protection
- 9.4.1.Pilot Study of the Performance of Organic- and Clay-Based Sun Creams
- 9.4.1.1.Tested Creams
- 9.4.1.2.Testing
- 9.4.1.3.Results
- 9.4.1.4.Conclusions
- 9.4.2.Comprehensive Studies
- 9.4.2.1.Tested Creams
- 9.4.2.2.Testing
- 9.4.2.3.Results
- 9.5.Clay in Cosmetology
- 9.5.1.Background
- 9.5.2.Interaction of Clay Minerals and Epidermis
- 9.5.3.Rheology
- 9.5.4.Clay Candidates
- Contents note continued: 9.5.5.Density and Consistency of Smectite Creams with and without Organic Liquid
- 9.6.Summary of Fundamental Properties of Smectitic Creams on Skin
- References.