Bentonite clay : environmental properties and applications /

Bibliographic Details
Main Author: Pusch, Roland (Author)
Format: Book
Language:English
Published: Boca Raton, FL : CRC Press, Taylor & Francis Group, [2015]
Subjects:
Table of Contents:
  • Machine generated contents note: 1.1.Main Issues
  • 1.2.Smectite Clay-The Muddiest Type of Soft Clay
  • 1.3.Stress-Strain Problems
  • 1.4.Preparation of Smectite Clay for Sealing Purposes
  • 1.5.Quality Issues
  • 1.6.Performance Tests
  • References
  • 2.1.Origin of Smectite Clays
  • 2.2.Where Are All These Famous and Magic Clays?
  • 2.2.1.North America
  • 2.2.1.1.The United States
  • 2.2.1.2.Canada
  • 2.2.2.South America
  • 2.2.3.Central America
  • 2.2.3.1.Mexico
  • 2.2.4.Africa
  • 2.2.5.Middle East
  • 2.2.6.Asia
  • 2.2.6.1.China
  • 2.2.6.2.India
  • 2.2.6.3.Japan
  • 2.2.7.Europe
  • 2.2.7.1.Germany
  • 2.2.7.2.Denmark
  • 2.2.7.3.Italy
  • 2.2.7.4.Spain
  • 2.2.7.5.Czech Republic
  • 2.2.7.6.Greece
  • 2.3.Potential Smectite Resources
  • 2.4.Are New Smectites Being Formed Today?
  • 2.5.Quality of Natural Smectite Clays for Practical Use
  • 2.6.Conclusion
  • References
  • 3.1.Basics
  • 3.2.Smectite Family
  • 3.3.Crystal Constitution of Smectites
  • 3.4.Chemical Composition of Natural Smectite Clays
  • 3.4.1.Smectite Component
  • 3.5.Mineral Composition of Natural Smectite Clays
  • 3.5.1.Smectite-Rich Clays
  • 3.5.2.Clays with Moderate and Low Smectite Contents
  • 3.6.Role of Clay Particle Charge
  • 3.6.1.Basics and Practicalities
  • 3.6.2.CEC, Anion Exchange Capacity, and Specific Surface Area
  • 3.6.3.Mechanisms in Cation Exchange
  • 3.6.4.Role of Anions
  • 3.6.5.Phosphorus and Nitrogen
  • 3.6.6.Sulfur
  • 3.6.7.Organic Content
  • 3.6.8.Special Role of Organic Elements
  • 3.6.8.1.Bacteria
  • 3.6.8.2.Identification of Smectite Minerals
  • 3.7.Conclusion
  • References
  • 4.1.Overview
  • 4.2.Physicochemical Background
  • 4.2.1.Energy Considerations, Soil-Water Potentials
  • 4.2.2.Hydration of Smectite Clay
  • 4.3.Hydraulic Conductivity
  • 4.3.1.Definition of Hydraulic Conductivity
  • 4.3.2.Determination of the Hydraulic Conductivity in the Laboratory
  • 4.3.3.Microstructural Implications
  • 4.3.4.Role of Hydraulic Gradients
  • 4.3.4.1.Test Principles and Theory
  • 4.3.4.2.Experimental Proof of the Impact of the Hydraulic Gradient
  • 4.3.4.3.Piping and Erosion
  • 4.3.4.4.Experimental Evidence
  • 4.3.4.5.Impact of Hydraulic Gradients on the Permeation of Water-Saturated Clay Seals
  • 4.3.5.Impact of Saltwater on the Hydraulic Conductivity
  • 4.3.6.Criteria
  • 4.3.7.Impact of Smectite Content on the Hydraulic Conductivity of Mixed Soils
  • 4.3.7.1.Mixed Clay and Coarser Material
  • 4.3.7.2.Natural Soils
  • 4.3.7.3.Hydraulic Conductivity of Unsaturated Clay
  • 4.4.Gas Conductivity
  • 4.4.1.Basics
  • 4.4.2.Determination of Gas Transport Capacity
  • 4.4.2.1.Background
  • 4.4.2.2.Laboratory Technique
  • 4.4.3.Modeling of Gas Penetration Using Capillary Analogs
  • 4.5.Ion Diffusion
  • 4.5.1.Definitions
  • 4.5.2.Mechanisms and Basic Relationships
  • 4.5.3.Role of the Microstructure
  • 4.5.4.Impact of the Microstructural Constitution on Ion Diffusion
  • 4.5.5.Test Principles and Theory
  • 4.5.5.1.Technique
  • 4.5.5.2.Role of Electrical Double Layers for Ion Diffusion
  • 4.6.Colloid Transport
  • 4.7.Microbiological Filtering
  • 4.8.Heat Transport-Thermal Properties
  • 4.8.1.Overview
  • 4.8.2.Influence of Water Content
  • 4.8.3.Influence of Smectite Content
  • 4.8.4.Influence of Stress and Temperature
  • 4.9.Couplings, Dependencies, and Interdependencies
  • References
  • 5.1.Introduction
  • 5.2.Application of Concepts of Soil Mechanics to Smectite Clay
  • 5.2.1.Effective Stress Concept
  • 5.2.2.Role of the Effective Stress for the Physical Stability of Clay Seals
  • 5.2.3.Stress-Strain Definitions and Parameters
  • 5.2.3.1.Compression Modulus K
  • 5.2.3.2.Shear Stress Modulus G
  • 5.2.3.3.Oedometer Modulus M
  • 5.2.3.4.Compression Properties
  • 5.2.3.5.Time Dependence
  • 5.2.3.6.Shear Strain
  • 5.3.Role and Mechanisms of Consolidation and Creep
  • 5.3.1.Cases
  • 5.3.2.Consolidation
  • 5.3.3.Shear Strain by Creep
  • 5.4.Fundamentals of Thermal Conditions and Performance
  • 5.4.1.Definitions and Parameters
  • 5.4.2.Influence of Temperature
  • 5.5.Evolution of Clay Seals
  • 5.5.1.Hydration
  • 5.5.2.Forslind-Jacobsson Model
  • 5.6.Clay Microstructure and Its Role for the Stress-Strain Behavior of Smectite Clays
  • 5.6.1.Scale Dependence
  • 5.6.2.Impact of Heating
  • 5.6.3.Microstructural Modeling of Smectite-Rich Clay
  • 5.7.Effect of Combined Wetting and Heating of Clay Seals-The Buffer Case
  • 5.7.1.Practical Cases
  • 5.7.2.Hydration of Smectite-Rich Buffer Clay under Temperature Gradients
  • 5.7.3.Physical Processes Taking Place in Buffer Clay
  • 5.7.4.Evolution of the Buffer-Temperature
  • 5.7.5.Evolution of the Buffer-Expansion and Consolidation under Hot Conditions
  • 5.7.6.Modeling of the Hydration of Buffer Clay
  • 5.7.7.Thermo-Hydro-Mechanical-Chemical Processes in Buffer Clay-Salt Accumulation
  • 5.8.Concepts and Techniques for Isolating Moderately Hazardous Waste
  • 5.8.1.Landfills
  • 5.8.2.Underground Disposal in Shallow Repositories
  • 5.8.3.Underground Disposal in Abandoned Mines
  • 5.9.Concepts for Isolating Highly Radioactive Waste
  • 5.9.1.Medium-Deep Repositories
  • 5.9.1.1.The KBS-3V Concept
  • 5.9.2.Steep Holes with Two or Several Canisters (Case A)
  • 5.9.3.Big Cavern with Numerous Canisters (Case B-1)
  • 5.9.4.Tunnels or Drifts with Large Clay-Isolated Concrete Containers (Case B-2)
  • 5.9.5.Inclined Holes. (Case C)
  • 5.9.6.Very Long Holes (Case D)
  • 5.10.Very Deep Holes
  • 5.11.Correlation of Hydraulic and Mechanical Performances of Clay Seals
  • 5.11.1.Piping and Erosion of Clay Seals
  • 5.11.2.VDH Concept
  • 5.11.2.1.Clay Mud
  • 5.11.2.2.Clay Block Seals
  • 5.11.2.3.Interaction of Mud and Blocks
  • 5.11.3.Usefulness of Rock for Hosting Repositories
  • 5.12.Concluding Remarks
  • References
  • 6.1.Chemical Stability of Smectite Clay for Waste Isolation
  • 6.1.1.Our Starting Point
  • 6.1.2.Natural Analogs
  • 6.1.2.1.Conversion of Smectite to Nonexpanding Minerals
  • 6.1.2.2.Kinnekulle-A Comforting Case?
  • 6.2.Experimental Evidence
  • 6.2.1.Overview
  • 6.2.2.Stripa Project Laboratory Study
  • 6.2.2.1.Test Program and Techniques
  • 6.2.2.2.Summary of Results
  • 6.2.3.SKB-ANDRA Study
  • 6.2.4.RMN Study
  • 6.2.5.Swedish-Czech-Chinese University Study
  • 6.2.5.1.Montmorillonite-Dominated MX-80
  • 6.2.5.2.Saponite-Dominated Clay
  • 6.2.5.3.Mixed-Layer I/S Clay
  • 6.2.6.SKB Field Tests
  • 6.2.7.Matter of Stiffening
  • 6.2.8.Interaction of Smectite Clay and Other Components
  • 6.2.8.1.Smectite Clay Contacting Copper Metal
  • 6.2.8.2.Smectite Clay Contacting Iron and Steel
  • 6.2.8.3.I/S Mixed-Layer Smectite Clay Contacting Concrete
  • 6.2.8.4.Montmorillonite-Rich Clay Contacting Low-pH Concrete
  • 6.3.Summary Respecting Smectite Chemistry and Mineralogy
  • 6.3.1.Overview
  • 6.3.2.Geochemical Modeling
  • 6.4.Concluding Remarks
  • References
  • 7.1.Overview
  • 7.2.Block Preparation
  • 7.2.1.Raw Material
  • 7.2.2.Achievable Block Density
  • 7.2.3.Preparation of Dense Blocks of Smectite Clay
  • 7.2.4.Blocks Prepared by Uniaxial Compression
  • 7.2.5.Blocks Prepared by Isotropic Compression
  • 7.2.6.Microstructural Constitution of Compacted Smectite Clay
  • 7.3.Clay Liners, Materials, and Principles of Construction
  • 7.3.1.Principles of Design and Construction
  • 7.3.2.Criteria
  • 7.3.3.Principle of Placement and Compaction
  • 7.3.4.Microstructural Constitution of Compacted Smectite Clay Liners
  • 7.3.5.Microstructural Modeling of Smectite Clay
  • 7.4.Clays for Rock Grouting
  • 7.4.1.Use of Grouts with respect to Their Physical Stability
  • 7.4.1.1.Argillaceous Cement Grouts
  • 7.4.1.2.Role of Palygorskite
  • 7.4.2.Penetrability and Sealing Function of Clay-Based Grouts
  • 7.5.General Aspects on Selection and Use of Smectite Clays for Waste Isolation
  • References
  • 8.1.Waste Isolation by Use of Clay
  • 8.2.VDH-Ostrich Philosophy or a Serious Alternative for HLW Disposal?
  • 8.2.1.Background
  • 8.2.2.Rock Conditions
  • 8.2.3.Temperature Conditions
  • 8.2.4.Conditions Respecting the Chemical Composition of the Groundwater
  • 8.3.Sealing Components
  • 8.3.1.Overview
  • 8.3.2.Waste Canisters
  • 8.3.2.1.Steel Canisters
  • 8.3.2.2.Mud Performance
  • 8.3.2.3.Casing Performance
  • 8.3.2.4.Supercontainer Performance
  • 8.3.2.5.Canister Performance
  • 8.3.2.6.Buffer Clay Performance
  • 8.3.3.Concrete
  • 8.3.4.Practical Aspects-Placeability
  • 8.3.5.Long-Term Function of Clay Components in the Sealed and Deployment Zones
  • 8.3.6.Long-Term Function of Concrete Seals
  • 8.3.7.Impact of Gamma Radiation
  • 8.3.8.Unexpected Events
  • 8.3.9.Environmental Impact
  • 8.4.SARC-The Poor Man's Solution
  • 8.4.1.Background
  • 8.4.2.Steps in Siting of SARC
  • 8.4.3.Constitution of a SARC Repository for HLW
  • 8.4.3.1.General Conditions
  • 8.4.3.2.Bottom Bed
  • 8.4.3.3.Containers and Canisters
  • 8.4.3.4.Clay Block Liner
  • 8.4.4.General Scenario of a SARC Repository
  • 8.4.4.1.Function of SARC
  • 8.4.4.2.Bottom Bed
  • 8.4.4.3.Clay Block Liner
  • 8.4.4.4.Containers and Canisters
  • 8.4.5.Environmental Impact
  • 8.5.Borehole Sealing
  • References
  • 9.1.Origin of Life
  • 9.2.Interaction of Smectite Clay and Organic Molecules
  • 9.3.Interaction of Clays and Organics in Medical Treatment
  • 9.3.1.Issues Considered
  • 9.3.2.Clays in Natural Medicine
  • 9.3.3.Clay for Healing Wounds
  • 9.3.4.Extraction of Hazardous Elements Poisoning the Human Body
  • 9.3.4.1.Principle
  • 9.3.4.2.Preference of Clay Minerals
  • 9.3.4.3.Interaction of Clay Minerals and Cells in the Gastric System
  • 9.3.4.4.Radionuclides
  • 9.3.5.Potential to Cure Cancer
  • 9.3.6.Summing Up on Clays in Modern Medicine
  • 9.4.Sun Protection
  • 9.4.1.Pilot Study of the Performance of Organic- and Clay-Based Sun Creams
  • 9.4.1.1.Tested Creams
  • 9.4.1.2.Testing
  • 9.4.1.3.Results
  • 9.4.1.4.Conclusions
  • 9.4.2.Comprehensive Studies
  • 9.4.2.1.Tested Creams
  • 9.4.2.2.Testing
  • 9.4.2.3.Results
  • 9.5.Clay in Cosmetology
  • 9.5.1.Background
  • 9.5.2.Interaction of Clay Minerals and Epidermis
  • 9.5.3.Rheology
  • 9.5.4.Clay Candidates
  • Contents note continued: 9.5.5.Density and Consistency of Smectite Creams with and without Organic Liquid
  • 9.6.Summary of Fundamental Properties of Smectitic Creams on Skin
  • References.