Cement and concrete mineral admixtures /

Bibliographic Details
Main Author: Tokyay, Mustafa (Author)
Format: Book
Language:English
Published: Boca Raton : CRC Press, Taylor & Francis Group, [2016]
Subjects:
Table of Contents:
  • Machine generated contents note: 1.Admixtures and additions
  • 1.1.General
  • 1.2.Mineral admixtures
  • 2.Natural pozzolans
  • 2.1.General
  • 2.2.Chemical composition
  • 2.3.Mineralogical composition
  • 2.4.Fineness
  • 3.Fly ashes
  • 3.1.General
  • 3.2.Mineralogical composition
  • 3.3.Chemical composition and classification
  • 3.3.1.Classifications according to SiO2, Al2O3, CaO and SO3 contents
  • 3.3.2.Classifications according to CaO content
  • 3.4.Fineness, particle size distribution and particle morphology
  • 3.5.Density
  • 3.6.Radioactivity
  • 4.Blast furnace slag
  • 4.1.General
  • 4.2.Mineralogical composition
  • 4.3.Chemical composition
  • 4.4.Fineness
  • 5.Silica fume
  • 5.1.General
  • 5.2.Chemical composition
  • 5.3.Mineralogical composition
  • 5.4.Fineness and particle morphology
  • 6.Limestone powder
  • 6.1.General
  • 6.2.Chemical composition
  • 6.3.Mineralogical composition
  • 6.4.Fineness and particle size distribution
  • 7.Other mineral admixtures
  • 7.1.Calcined soils
  • 7.1.1.Clays
  • 7.1.2.Other soils
  • 7.2.Rice husk ash
  • 7.3.Other industrial and agricultural wastes as possible mineral admixtures
  • 7.3.1.Waste glass
  • 7.3.2.Brick and tile rejects
  • 7.3.3.Stone wastes
  • 7.3.4.Municipal solid waste ash
  • 7.3.5.Agricultural wastes
  • 8.Effects of mineral admixtures on hydration of Portland cement
  • 8.1.General about PCs
  • 8.2.PC Hydration
  • 8.2.1.Hydration of tricalcium silicate
  • 8.2.2.Hydration of dicalcium silicate
  • 8.2.3.Hydration of tricalcium aluminate
  • 8.2.4.Hydration of ferrite phase
  • 8.2.5.Hydration of PC
  • 8.3.Influence of mineral admixtures on hydration
  • 8.3.1.Physical influence
  • 8.3.2.Chemical influence
  • 8.3.2.1.Pozzolanic reactions
  • 8.3.2.2.Latent hydraulic reactions
  • 9.Effects of mineral admixtures on the workability of fresh concrete
  • 9.1.General about concrete workability
  • 9.1.1.Basic principles of rheology related with fresh concrete
  • 9.1.2.Various methods for measuring concrete workability
  • 9.2.Changes in concrete workability upon mineral admixture incorporation
  • 9.2.1.Water demand
  • 9.2.1.1.Effect of natural pozzolans
  • 9.2.1.2.Effect of fly ashes
  • 9.2.1.3.Effect of GGBFS
  • 9.2.1.4.Effect of SF
  • 9.2.1.5.Effect of limestone powder
  • 9.2.2.Different workability test results
  • 9.2.3.Consistency and cohesiveness
  • 9.2.4.Segregation and bleeding
  • 9.2.5.Slump loss
  • 9.3.Changes in setting time upon mineral admixture incorporation
  • 9.4.Effects of mineral admixture incorporation on air content of fresh concrete
  • 9.5.Effect of mineral admixtures on early heat of hydration
  • 10.Effects of mineral admixtures on the properties of hardened concrete
  • 10.1.Strength
  • 10.1.1.Basics of strength of concrete
  • 10.1.2.Factors affecting the strength of concrete
  • 10.1.2.1.Strengths of the component phases
  • 10.1.2.2.Curing conditions
  • 10.1.2.3.Specimen parameters
  • 10.1.2.4.Loading parameters
  • 10.1.3.Influence of mineral admixtures on concrete strength
  • 10.1.3.1.Strength development
  • 10.1.3.2.Effect of curing temperature
  • 10.1.3.3.Changes in matrix porosity and ITZ
  • 10.2.Modulus of elasticity
  • 10.3.Shrinkage
  • 10.4.Creep
  • 11.Effects of mineral admixtures on durability of concrete
  • 11.1.Freezing and thawing
  • 11.1.1.The frost attack mechanism
  • 11.1.1.1.Hydraulic pressure theory
  • 11.1.1.2.Osmotic pressure theory
  • 11.1.1.3.Litvan's theory
  • 11.1.2.Influence of air-entrainment on freeze--thaw resistance
  • 11.1.3.Influence of mineral admixtures on freeze--thaw resistance
  • 11.1.4.Influence of mineral admixtures on deicer salt scaling
  • 11.2.Sulphate attack
  • 11.2.1.Action of sulphates on portland cement concrete
  • 11.2.1.1.Thaumasite formation
  • 11.2.1.2.Delayed ettringite formation
  • 11.2.2.Influence of mineral admixtures on sulphate attack
  • 11.3.Sea water attack
  • 11.4.Carbonatation
  • 11.5.Reinforcement corrosion
  • 11.6.Alkali--aggregate reactivity
  • 11.7.Permeability of concrete
  • 12.Proportioning mineral admixture-incorporated concretes
  • 12.1.Principles of concrete mix proportioning
  • 12.2.Mix proportioning concrete with mineral admixtures
  • 12.2.1.Simple partial replacement of PC
  • 12.2.2.Partial replacement and addition
  • 12.3.Water--cement and water--cementitious ratio and efficiency factor concepts
  • 12.3.1.Water--cementitious ratio
  • 12.3.2.Efficiency factor
  • 13.International standards on mineral admixtures in cement and concrete
  • 13.1.Overview of the cement standards
  • 13.1.1.Requirements for mineral admixtures in EN 197-1
  • 13.1.2.Requirements for mineral admixtures in ASTM C 595
  • 13.1.3.Comparison of chemical and physical requirements for blended cements in EN 197-1 and ASTM C 595
  • 13.1.4.ASTM C 1157
  • 13.2.Overview of standards on mineral admixtures in concrete
  • 14.Use of mineral admixtures in special concretes
  • 14.1.Lightweight concrete
  • 14.2.High-strength concrete
  • 14.3.Controlled low-strength materials
  • 14.4.Self-consolidating concrete
  • 14.5.Fibre-reinforced concrete
  • 14.6.Reactive powder concrete
  • 14.7.Mass concrete
  • 14.8.Roller compacted concrete
  • 15.Mineral admixtures as primary components of special cements
  • 15.1.Sustainability and cement
  • 15.1.1.Resource efficiency
  • 15.1.2.Energy efficiency
  • 15.1.3.Carbon sequestration and reuse
  • 15.1.4.Product efficiency and downstream measures
  • 15.2.Low-energy, low-CO2 cements with mineral admixtures
  • 15.2.1.Mineral admixtures as clinker substitutes
  • 15.2.2.Mineral admixtures as raw materials for low-energy cements
  • 15.2.2.1.Belitic cements
  • 15.2.2.2.Alinite cements
  • 15.2.2.3.SAB cements
  • 15.2.2.4.Alkali-activated binders.