Computer vision : algorithms and applications /

Computer Vision: Algorithms and Applications explores the variety of techniques used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both in specialized applications such as image search and autonomous navigation, as wel...

Full description

Saved in:
Bibliographic Details
Main Author: Szeliski, Richard, 1958- (Author)
Corporate Author: SpringerLink (Online service)
Format: Book
Language:English
Published: Cham : Springer, [2022]
Edition:Second edition.
Series:Texts in computer science.
Subjects:
LEADER 05400cam a2200529Ii 4500
001 538693ab-af9b-4d7b-9d7a-342b027da5b7
005 20241224000000.0
008 220105s2022 sz a ob 001 0 eng d
035 |a (OCoLC)on1290841069 
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d OCLCO  |d N$T  |d DCT  |d OCLCF  |d DKU 
020 |a 9783030343729  |q (electronic bk.) 
020 |a 3030343723  |q (electronic bk.) 
020 |z 9783030343712 
020 |z 3030343715 
024 7 |a 10.1007/978-3-030-34372-9  |2 doi 
035 |a (OCoLC)1290841069  |z (OCoLC)1291146288  |z (OCoLC)1291171746  |z (OCoLC)1291316737  |z (OCoLC)1293735810  |z (OCoLC)1294359884  |z (OCoLC)1296666507 
037 |b Springer 
050 4 |a TA1634  |b .S94 2022 
049 |a PVUM 
100 1 |a Szeliski, Richard,  |d 1958-  |e author. 
245 1 0 |a Computer vision :  |b algorithms and applications /  |c Richard Szeliski. 
250 |a Second edition. 
264 1 |a Cham :  |b Springer,  |c [2022] 
264 4 |c ©2022 
300 |a 1 online resource :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts in computer science 
504 |a Includes bibliographical references and index. 
506 |a Electronic access restricted to Villanova University patrons. 
520 |a Computer Vision: Algorithms and Applications explores the variety of techniques used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both in specialized applications such as image search and autonomous navigation, as well as for fun, consumer-level tasks that students can apply to their own personal photos and videos. More than just a source of "recipes" this exceptionally authoritative and comprehensive textbook/reference takes a scientific approach to the formulation of computer vision problems. These problems are then analyzed using the latest classical and deep learning models and solved using rigorous engineering principles. Topics and features: Structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses Incorporates totally new material on deep learning and applications such as mobile computational photography, autonomous navigation, and augmented reality Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects Includes 1,500 new citations and 200 new figures that cover the tremendous developments from the last decade Provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, estimation theory, datasets, and software Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision. About the Author Dr. Richard Szeliski has more than 40 years experience in computer vision research, most recently at Facebook and Microsoft Research, where he led the Computational Photography and Interactive Visual Media groups. He is currently an Affiliate Professor at the University of Washington where he co-developed (with Steve Seitz) the widely adopted computer vision curriculum on which this book is based. 
505 0 |a 1 Introduction -- 2 Image Formation -- 3 Image Processing -- 4 Model Fitting and Optimization -- 5 Deep Learning -- 6 Recognition -- 7 Feature Detection and Matching -- 8 Image Alignment and Stitching -- 9 Motion Estimation -- 10 Computational Photography -- 11 Structure from Motion and SLAM -- 12 Depth Estimation -- 13 3D Reconstruction -- 14 Image-Based Rendering -- 15 Conclusion -- Appendix A: Linear Algebra and Numerical Techniques -- Appendix B: Bayesian Modeling and Inference -- Appendix C: Supplementary Material. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed January 12, 2022). 
590 |a Perpetual access. 
598 |a 07-MAR-22  |z  
650 0 |a Computer vision. 
650 7 |a Computer vision.  |2 fast  |0 (OCoLC)fst00872687 
655 0 |a Electronic books. 
710 2 |a SpringerLink (Online service) 
776 0 8 |c Original  |z 3030343715  |z 9783030343712  |w (OCoLC)1122461547 
830 0 |a Texts in computer science. 
999 1 0 |i 538693ab-af9b-4d7b-9d7a-342b027da5b7  |l 00011604527  |s US-PBL  |m computer_visionalgorithms_and_applications_________________________________2022____2__sprina________________________________________szeliski__richard__________________e 
999 1 0 |i 538693ab-af9b-4d7b-9d7a-342b027da5b7  |l 2820480  |s US-PV  |m computer_visionalgorithms_and_applications_________________________________2022____2__sprina________________________________________szeliski__richard__________________e 
999 1 1 |l 00011604527  |s ISIL:US-PBL  |i Lehigh  |t BKS  |a Electronic  |c Electronic book  |d Other scheme  |p UNLOANABLE 
999 1 1 |l 2820480  |s ISIL:US-PV  |i Villanova  |t BKS  |a World Wide Web  |c TA1634 .S94 2022  |d Library of Congress classification  |x Electronic Books  |p UNLOANABLE