|
|
|
|
LEADER |
04799cam a2200421 a 4500 |
001 |
03791a3b-557e-4c97-913c-f58f333e875a |
005 |
20230506000000.0 |
008 |
081017t20092009ne a 001 0 eng |
010 |
|
|
|a 2008277872
|
020 |
|
|
|a 9780123744272
|
020 |
|
|
|a 012374427X
|
035 |
|
|
|a (OCoLC)ocn269456924
|
035 |
|
|
|a (PUVoyagerBIBID)4477315
|
035 |
|
|
|a (OCoLC)269456924
|
035 |
|
|
|a (PU)4477315-penndb-Voyager
|
040 |
|
|
|a DLC
|b eng
|c DLC
|d CDX
|
049 |
|
|
|a PAUU
|
050 |
0 |
0 |
|a QA188
|b .B758 2009
|
082 |
0 |
0 |
|a 512.9/434
|2 22
|
100 |
1 |
|
|a Bronson, Richard.
|0 http://id.loc.gov/authorities/names/n81050387
|
245 |
1 |
0 |
|a Matrix methods :
|b applied linear algebra /
|c Richard Bronson, Gabriel B. Costa.
|
250 |
|
|
|a Third edition.
|
264 |
|
1 |
|a Amsterdam ;
|a Boston :
|b EAcademic Press,
|c [2009]
|
264 |
|
4 |
|c ©2009
|
300 |
|
|
|a xv, 416 pages :
|b illustrations ;
|c 25 cm
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a unmediated
|b n
|2 rdamedia
|
338 |
|
|
|a volume
|b nc
|2 rdacarrier
|
500 |
|
|
|a Includes index.
|
505 |
0 |
0 |
|g 1
|t Matrices
|g 1 --
|g 1.2
|t Operations
|g 6 --
|g 1.3
|t Matrix Multiplication
|g 9 --
|g 1.4
|t Special Matrices
|g 19 --
|g 1.5
|t Submatrices and Partitioning
|g 29 --
|g 1.6
|t Vectors
|g 33 --
|g 1.7
|t The Geometry of Vectors
|g 37 --
|g 2
|t Simultaneous Linear Equations
|g 43 --
|g 2.1
|t Linear Systems
|g 43 --
|g 2.2
|t Solutions by Substitution
|g 50 --
|g 2.3
|t Gaussian Elimination
|g 54 --
|g 2.4
|t Pivoting Strategies
|g 65 --
|g 2.5
|t Linear Independence
|g 71 --
|g 2.6
|t Rank
|g 78 --
|g 2.7
|t Theory of Solutions
|g 84 --
|g 3
|t The Inverse
|g 93 --
|g 3.2
|t Calculating Inverses
|g 101 --
|g 3.3
|t Simultaneous Equations
|g 109 --
|g 3.4
|t Properties of the Inverse
|g 112 --
|g 3.5
|t LU Decomposition
|g 115 --
|g 4
|t An Introduction to Optimization
|g 127 --
|g 4.1
|t Graphing Inequalities
|g 127 --
|g 4.2
|t Modeling with Inequalities
|g 131 --
|g 4.3
|t Solving Problems Using Linear Programming
|g 135 --
|g 4.4
|t An Introduction to The Simplex Method
|g 140 --
|g 5
|t Determinants
|g 149 --
|g 5.2
|t Expansion by Cofactors
|g 152 --
|g 5.3
|t Properties of Determinants
|g 157 --
|g 5.4
|t Pivotal Condensation
|g 163 --
|g 5.5
|t Inversion
|g 167 --
|g 5.6
|t Cramer's Rule
|g 170 --
|g 6
|t Eigenvalues and Eigenvectors
|g 177 --
|g 6.2
|t Eigenvalues
|g 180 --
|g 6.3
|t Eigenvectors
|g 184 --
|g 6.4
|t Properties of Eigenvalues and Eigenvectors
|g 190 --
|g 6.5
|t Linearly Independent Eigenvectors
|g 194 --
|g 6.6
|t Power Methods
|g 201 --
|g 7
|t Matrix Calculus
|g 213 --
|g 7.1
|t Well-Defined Functions
|g 213 --
|g 7.2
|t Cayley-Hamilton Theorem
|g 219 --
|g 7.3
|t Polynomials of Matrices-Distinct Eigenvalues
|g 222 --
|g 7.4
|t Polynomials of Matrices-General Case
|g 228 --
|g 7.5
|t Functions of a Matrix
|g 233 --
|g 7.6
|t The Function e[superscript At]
|g 238 --
|g 7.7
|t Complex Eigenvalues
|g 241 --
|g 7.8
|t Properties of e[superscript A]
|g 245 --
|g 7.9
|t Derivatives of a Matrix
|g 248 --
|g 8
|t Linear Differential Equations
|g 257 --
|g 8.1
|t Fundamental Form
|g 257 --
|g 8.2
|t Reduction of an nth Order Equation
|g 263 --
|g 8.3
|t Reduction of a System
|g 269 --
|g 8.4
|t Solutions of Systems with Constant Coefficients
|g 275 --
|g 8.5
|t Solutions of Systems-General Case
|g 286 --
|g 9
|t Probability and Markov Chains
|g 297 --
|g 9.1
|t Probability: An Informal Approach
|g 297 --
|g 9.2
|t Some Laws of Probability
|g 301 --
|g 9.3
|t Bernoulli Trials and Combinatorics
|g 305 --
|g 9.4
|t Modeling with Markov Chains: An Introduction
|g 310 --
|g 10
|t Real Inner Products and Least-Square
|g 315 --
|g 10.2
|t Orthonormal Vectors
|g 320 --
|g 10.3
|t Projections and QR-Decompositions
|g 327 --
|g 10.4
|t The QR-Algorithm
|g 339 --
|g 10.5
|t Least-Squares
|g 344 --
|g Appendix
|t A Word on Technology
|g 355.
|
590 |
|
|
|a Acquired for the Penn Libraries with assistance from the Anne and Joseph Trachtman Memorial Book Fund.
|
520 |
|
|
|a Matrix Methods: Applied Linear Algebra, 3e, as a textbook, provides a unique and comprehensive balance between the theory and computation of matrices. The application of matrices is not just for mathematicians. The use of matrices in other disciplines has grown dramatically over the years in response to the rapid changes in technology. Matrix techniques and applications lie at the heart of linear algebra. Matrices are used in all branches of science and engineering to solve real world problems.
|
650 |
|
0 |
|a Matrices.
|0 http://id.loc.gov/authorities/subjects/sh85082210
|
650 |
|
7 |
|a Matrices.
|2 fast
|0 http://id.worldcat.org/fast/1012399
|
700 |
1 |
|
|a Costa, Gabriel B.
|0 http://id.loc.gov/authorities/names/no2006087438
|
710 |
2 |
|
|a Anne and Joseph Trachtman Memorial Book Fund.
|5 PU
|
999 |
1 |
0 |
|i 03791a3b-557e-4c97-913c-f58f333e875a
|l 9944773153503681
|s US-PU
|m matrix_methodsapplied_linear_algebra_______________________________________2009____3__eacada________________________________________bronson__richard___________________p
|
999 |
1 |
1 |
|l 9944773153503681
|s ISIL:US-PU
|i University of Pennsylvania
|t BKS
|a MPALib math
|b 31198050435424
|c QA188 .B758 2009
|d 0
|x BOOK
|y 23423015750003681
|p UNLOANABLE
|